Gene clusters for S fimbrial adhesin (sfa) and F1C fimbriae (foc) of Escherichia coli: comparative aspects of structure and function.
نویسندگان
چکیده
Fimbrial adhesins enable bacteria to attach to eucaryotic cells. The genetic determinants for S fimbrial adhesins (sfa) and for F1C ("pseudotype I") fimbriae (foc) were compared. Sfa and F1C represent functionally distinct adhesins in their receptor specificities. Nevertheless, a high degree of homology between both determinants was found on the basis of DNA-DNA hybridizations. Characteristic differences in the restriction maps of the corresponding gene clusters, however, were visible in regions coding for the fimbrial subunits and for the S-specific adhesin. While a plasmid carrying the genetic determinant for F1C fimbriae was able to complement transposon-induced sfa mutants, a plasmid carrying the genetic determinant for a third adhesin type, termed P fimbriae, was unable to do so. Proximal sfa-specific sequences carrying the S fimbrial structural gene were fused to sequences representing the distal part of the foc gene cluster to form a hybrid cluster, and the foc proximal region coding for the structural protein was ligated to sfa distal sequences to form a second hybrid. Both hybrid clones produced intact fimbriae. Anti-F1C monoclonal antibodies (MAbs) only recognized clones which produced F1C fimbriae, and an anti-S adhesin MAb marked clones which expressed the S adhesin. However, one of four other anti-S fimbriae-specific MAbs reacted with both fimbrial structures, S and F1C, indicating a common epitope on both antigens. The results presented here support the view that sfa and foc determinants code for fimbriae that are similar in several aspects, while the P fimbriae are members of a more distantly related group.
منابع مشابه
Detection of pap, sfa, afa, foc, and fim Adhesin-Encoding Operons in Uropathogenic Escherichia coli Isolates Collected From Patients With Urinary Tract Infection
BACKGROUND Uropathogenic Escherichia coli (UPEC) with its virulence factors is the most prevalent cause of urinary tract infection (UTI). OBJECTIVES This study aimed to determine the occurrence of fim, pap, sfa, and afa genes among 100 UPEC isolates collected from patients diagnosed with UTI. MATERIALS AND METHODS A total of 100 UPEC isolates were obtained from urine samples of patients wit...
متن کاملNucleotide sequence of the genes coding for minor fimbrial subunits of the F1C fimbriae of Escherichia coli.
F1C fimbriae allow uropathogenic Escherichia coli to adhere to specific epithelial surfaces. This adhesive property is probably due to the presence of minor fimbrial components in F1C fimbriae. The foc gene cluster encoding F1C fimbriae has been cloned, as described previously. Here we present the nucleotide sequence (2081 bp) coding for the F1C minor fimbrial subunits. The structural genes cod...
متن کاملAnalysis of the genetic determinants coding for the S-fimbrial adhesin (sfa) in different Escherichia coli strains causing meningitis or urinary tract infections.
Recently we have described the molecular cloning of the genetic determinant coding for the S-fimbrial adhesin (Sfa), a sialic acid-recognizing pilus frequently found among extraintestinal Escherichia coli isolates. Fimbriae from the resulting Sfa+ E. coli K-12 clone were isolated, and an Sfa-specific antiserum was prepared. Western blots indicate that S fimbriae isolated from different uropatho...
متن کاملRegulatory Interactions among adhesin gene systems of uropathogenic Escherichia coli.
Uropathogenic Escherichia coli strain J96 carries multiple determinants for fimbrial adhesins. The regulatory protein PapB of P fimbriae has previously been implicated in potential coregulatory events. The focB gene of the F1C fimbria determinant is highly homologous to papB; the translated sequences share 81% identity. In this study we investigated the role of PapB and FocB in regulation of th...
متن کاملNew fimbrial gene cluster of S-fimbrial adhesin family.
Fimbrial adhesins that mediate attachment to host cells are produced by most virulent Escherichia coli isolates. These virulence factors play an important role in the initial stages of bacterial colonization and also in determination of the host and tissue specificity. Isolates belonging to serotype O78 are known to cause a large variety of clinical syndromes in farm animals and humans and have...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 170 9 شماره
صفحات -
تاریخ انتشار 1988